忍者ブログ

new3room関連ブログ

"new3の部屋"の補完ブログ。 興味有るものを右の”分類”から選んでね:お勧めは 工学系(電子、頭の体操)。 お笑系(落語、テレビ、頭の体操、もろもろ、AV)。 ローカルネタ(赤穂、食、気候、千種・観光)。 乗物(自転車、運動、交通)。修正履歴はホームページの更新履歴(管理人覚書)。 何か連絡あるなら、 >分類>雑記帳(4)>とりあえず何か言いたい場合ここにコメントしてok をクリックして、この記事の開いた中のコメント欄へどうぞ。 非公開機能停止、チャット機能運用するとパンクしそうなので停止。

電子回路中のコンデンサの働き(知恵袋)

コンデンサは、電圧変化を小さくするように働くのか?という質問がでた。
---------------
コンデンサはなんだ?と聞かれると、Q=CVという式なんでしょうね。
で、実際に使うのは時間微分した
i=C*dV/dt
かな?電圧変化が電流だという式。

意味するところは、直流(dV/dt=0)は電流を流さないけど、交流信号は電流を流せるので、ACカップリングにより直流バイアス動作点をくずさないで、信号を伝えることができるとか。たとえばエミッタ接地のトランジスタ増幅回路だと、入力にも出力に利用されたりします。

(特に高周波の)交流は、電流を流すので、例えばスイッチングノイズのようにフーリエさんが高周波がいっぱいエネルギー持っているのを教えてくれるノイズの、不要なエネルギーを(つないだGNDに)逃がすことができるので、電圧への高周波ノイズを消せる(パスコン)とか。先に述べたエミッタ接地増幅回路は、DCバイアス調整で、エミッタ抵抗を入れるのですが、増幅したい交流成分がここで消費されるのはもったいないので、この抵抗に並列にコンデンサをつけて、DC的にはバイアス設定に有効で、AC的には、インピーダンス低くて、ここで電圧浪費しないので、コレクタ側での減衰しない信号増幅ができたりするのも、この応用。
 
大電流を流す必要がある場合に、大型電解コンデンサの大きいのつけとけば、電圧変化は小さくできるという電源回路のタンク回路とか(iが一定なら、Cが大きければdV/dtが小さくなるでしょう?これが質問主さんの主張部分かな?)
 
この式がコンデンサの用途をしっかり説明していると思うんや。
もちろんオペアンプをつかった微分回路なんつうのも、まさにこの式そのものの実現やしね。入力コンデンサに流れる電流は、オペアンプの入力端子には流れ込まなくて、帰還抵抗介して、オペアンプの出力電圧を電圧微分させて整合とってるんやで

質問主さんの考える機能以外に、いろんな応用・用途があるから、そんな覚え方まずいという前の人の解説ええと思うよ。
PR

非接触通信に高周波(知恵袋)

新人君の導入訓練の疑問だったりするのかな?知恵袋ででた非接触通信に高周波が使われる理由の問い合わせ。評価はもらえんかったけど、ええ説明じゃなかろうか?
---------------------
周波数と波長って逆数の関係だったりします。昔のアナログテレビの時代に八木アンテナという魚さんの骨みたいなのが屋根の上にあったでしょ?まあメートル単位で測りたい大きさのアンテナが効率的なエネルギー伝達や通信には必要だったりします。そんなの持ち歩けないでしょう?

また、イコカの場合(わい関西人やねん)、カードの残高とか、いつどこの改札とおって、金額いくら支払いましたという参照・記録が必要なわけです。ところで、カードを改札でかざして数秒待たされると(足を止めることになる)お客さんは大概キレます。なんて不細工な応答なんだと。たとえば、100Hzだったら、1秒にクロック100個しか送れません。このクロックでいろんな情報(送受信が必要)を、正しく送るのは無理です(だれも不正しない、間違わないという前提なら何とかなる??)。というわけでキャリアという通信の基本となるクロックは非常に高くしないと、お金を預かる複雑かつ信頼性のある通信ができなくなります(認証とかエラー検出判定などなど)。念のためいうと1クロック1ビット情報というのは、あり得ません。クロック信号も有る有線の同期通信だって、無理でしょ。 

あとローランドってしってる?(楽器メーカじゃないんだなぁ) 大昔潜水艦への通信に長波というAMラジオより低い周波数の電波をつかってました。低い周波数の電波って実はよく飛ぶ(波長が何百メートルやから、カードリーダの数cmなんてごみの長さ)。逆にBSとか大雨だとか映り悪くなりません? 障害物に弱かったりするんです。改札口で、となりの人のカードと混信したりしたら大変でしょう?最初の効率的に電波を出すのと逆だけど、遠くまで電波が伝わったら困る(極限られたポイント通信しか許容できない)という問題もあったりします。
車のスマートキーというドアのロック解除とかエンジン掛けるシステムで、無線機で中継して本人が離れたら盗んでやろうというやからが出没しているというニュースを聞きましたが、確実に届くというのと、遠くに飛んでは困るというジレンマがあったりするかな?

なかば雑談でした。技術的な話は他の人に任せます。

入門交流抵抗(知恵袋)

リアクタンスとはなんだという入門者向け解説。質問主さんの反応無だけど、ええ説明ちゃうやろか?
----------------------
抵抗Rは、直流でも、交流でも、常に電圧と電流は比例してますよね?

ところが、直流で、コンデンサは、電流流れないので、きれている(つながっていない)のと同じで、コイルは、抵抗ゼロの単なる線路とおなじです(あくまで定常状態の話。電源on/offの瞬間、ある時間帯は、過渡領域と呼んで、直流的ではない動作をします。LCそろうと振動したりうっとおしい動作する)。

これらのCやLを含む、交流抵抗を、インピーダンスと呼ぶのですが、これは、電圧と電流が、瞬時瞬時比例しているわけではない。

例えばコンデンサC:
コンデンサにたまる電荷は、Q=CVでしょ?電荷を微分すると電流。
i=dQ/dt=C*dv/dt

電圧Vを正弦波だとすると、微分するとコサイン波電流になるわけです。電圧0のあたりが、電圧変化が激しいので、電流が最大。電圧ピークのあたりは、ひらったくで、電圧変化すくないので、電流少ない。ちなみにコサイン波ということは、cos(Θ)=sin(Θ+90度) つまり、電流と電圧の位相が90度ずれているというのは、この式からもわかるでしょ?
 
時間的にずれが生じる分を、抵抗成分と、±90度ずれたコンデンサやコイルに起因する分に分離して(電気の世界では、数学で使うiだと電流と紛らわしいので)、jという複素数表示して扱うと、計算がしやすいのです(ベクトルの合成をイメージできるかな?)。
インピーダンスの、この90度ずれ成分を、±あわせて、リアクタンスといいます。

ちなみに、リアクタンスというのも、(角)周波数と組み合わせて、Ωという単位になります(コイルだと、ωL、コンデンサだと1/ωC)。
電圧と、電流の位相はずれているけれど、実効値(交流は平均だと、0になっちゃうので二乗平均を使ったりする)で考えると、位相関係なく、電流と電圧は比例します。

オシロのFFTに関して(知恵袋)

オシロのFFTの機能を問う質問があった。前の方々の回答みてスペアナと違うのか?という追加質問に対して横から。
----------------
スペアナやで。検出方法がけっこうちがうけど。

よく知らんけど、ワイのしっているスペアナは、狭帯域のフィルタを通して、順番にその周波数帯域のエネルギーはどれくらいというのを、取り込んで、最終結果を出します。連続波だと、素直に動くけど、断続波だと、偶然その帯域のデータ取得したいときに、信号がいなかったりすると、すっぽり抜けて、周波数領域で、なかなか連続データ検出にならなかったりする(測定の時短のために外部トリガ使うとええんやでと、某所で解説し採用)。

いっぽう、FFTは、オシロがトレースした1回分(かな)のデータ波形から、フーリエ変換という数値計算により、周波数成分をもとめます(フーリエさん偉い)。 FFTの最初のFは、ファーストといって、計算が高速にできるある計算方法採用していることを示しています。2のべき乗のサンプル数で、周期波形を捕まえるという決まりといえば、妥当かな? 大学3年でFFTならって、当時の8ビットPCで実行しようとしたんだけど挫折(そもそもアナログのそれらしいデータ作るというところから、難しい:エクセルの前のロータス123すらなかった時代なので、BASIC言語で、データ系列作ってもよかったんだろうけど、Cカセットベースのデータ系列作るのも厄介だし、計算した数値を印刷して、手入力するというのも面倒なので、アルゴリズムのあたり考えるだけで挫折してしまいました)
 
FFTは、周期波形のデータから計算するのが、決まりなので、実は理論通りにはデータ取得できない(時間軸が微調整できて、ちょうど一周期を取り込めば理想通りかもしれんが、ランダムっぽい実波形では、うまくいかない。一周期取り込みという前提を無理やり実現するために、フィルター処理して、無理やり、周期波形を受信したことにするので、そのフィルターの特性が影響して、アナログスペアなと、FFTスペアナは、大まかには、傾向わかるけど、イメージ違うという印象をもっている(汚いというかSN悪いというか。注目する帯域だけならいいんだろうけど。昔ながらの技術屋さんのなかにははっきり嫌いという人がいた)。

とはいえ、代表的な波形を取り込む条件が満足できていれば、同じFFTなら、なにか変えた時に、変化を、おいかけるには、有用ではある。
 
ギターのエフェクターの改造で、なま出力を、エフェクター通すと、オシロのFFTでみて、なるほど、ひずませるので、変な高調波が増えているというのが、見えたりした。
だからといって、その音が、いい音、面白い音なんかどうかは、素人のワイにはようわからんけど。
---------------------------------
蛇足ながら、
「フアースト(first)=一番」ではなくて、「ファスト(fast)=速い」・・・ですね。
というダメだしもろてもた(>_<) 早いから一番やと中身解るからええやんケ(+_+)
日本人の末端の技術屋さんは、英文技術資料を正しく読めれば、英語しゃべれなくても、発音おかしくても、かけなくても、何とかなるもんなんやで!!

まあ、日本人の英語発音悪いので、誰何されても、知らんぷり決め込んだろ!というような悪意のある外人と直接対応せんといかん業務の方々には、御苦労願いますけど。

サンプリングに関するうんちく(知恵袋)

質問に関する回答は、前の方が解説されているので、いいのですが。
サンプリング理論に関してもう一言。

サンプリングで記録できるのが、2倍というのも、語弊があって、10kの信号を、20kでサンプリングしたとして、きっちり2倍なので、10kの、0度、180度、360度(=0度),,,だと、まったく無信号。
90度、270度..だと、まあピーク電圧(振幅を表している)。もういちどやって、45度、225度..にすると、かなり小さな振幅。 どれがあってもおかしくないでしょ? ちょうど2倍で何とかなるというのは、かなり無理がある。
ここに関しては、別のお笑い系回答ナイキストさんの主張もいっしょにどうぞ。

同期サンプリングなんていいうのもあります。 たとえば昔のアナログテレビだと、カラーバーストとの位相変調で、色信号転送してたので、カラーバーストの3倍周波数で、同期サンプリングすると、3色の信号が得られたと思った)。
周波数がわかっているんだから、DC的に0クロスタイミングから、計算して、ピーク電圧ポイントをサンプリングする例も見た気がする。

あと、量子化したい・ほしい(注目する)信号の2倍の周波数というのも、理解がおかしくて、そこに存在する信号の2倍以上の周波数でないといけない。 存在するの意味は、なんかの漏れかもしれんし(たとえばスイッチング電源からの漏れとか)、単なるごみノイズかもしれんし、あるいは存在する信号同士の非線形回路をとおった干渉(混変調)とかかもしれんけど。
ほしい信号に合わせてサンプリング周波数選ぶ場合、これらの存在するより高い周波数の信号を除くために前の人の言うように、フィルター処理が必要なんだけど、完全スルーと、完全シャットダウンが、完全に切り替えられる高性能フィルターなんかできるわけない。フィルターのゲインで高域が量子化ノイズと大差ないような周波数に対して、2倍周波数選ばんと本来はまずいではないかな? でないと、前の人の言う折り返しノイズという意味不明のゴースト信号が、デジタル領域に現れてしまいます。
特定の周波数成分というなら、狭帯域のバンドパスでもええんやろうけど

関連コメントもついでにどうぞ。

細いパルスの帯域が広くなる(知恵袋)

フーリエの割と分り易い説明だと思うんだけど、だめかなぁ?
-------------
フーリエというのがあってだなぁ。まあ詳細は別途解説本どうぞ。

ディューティ50%のものは、基本正弦波の奇数倍の正弦波の和になります。
立ち上がりのタイミングは、何倍の正弦波でも、みんな0では立ち上がりです(同位相のもの想定)。
立下り180度で、高次の正弦波が立ち下がるのは、奇数倍のものだけ(偶数倍のはここで立ち上がるのでパルスを合成するのにじゃま)。
もっと狭い場合は、10%を考えると、この正の幅をもつ正弦波は、20%(5倍波)でしょ?同じ場所で立ち下がる正弦波をあつめると、5倍波の奇数倍(15,25,35..)。
ここから想像して、狭い幅をつくるためには、より高い周波数を用意して、さらにその高調波を用意して合成しないとだめなわけです。

え?パルスは、周期波形じゃない? まあ、それは、適当な周期を決めて仮想周期波形として、フーリエ変換するんだけど、まあ、それは別途勉強しよう。

インパルスのラブラス変換ははぜ!に(知恵袋)

もやもやしているけど、ワイのも本質的に正しくないかな?
--------------
難しいことはわからんのやけど。

インパルスの周波数特性(フーリエ)は、全周波数均等にもっているじゃないですか。これを、あるネットワークにいれれば、全周波数応答になるので、システムのf特よくわかるという意味だと思うのです。
すると、インパルスをラプラス領域で、あるネットワークにいれると、そのネットワークの特性がもれなく見える(ネットワークの特性そのものがみえる)ように、1になるんじゃなかろうか?

折り返し問い合わせされても回答不能ですので、適当に読み飛ばしてね

サンプリング(知恵袋)

医療系の測定にかかわる疑問だったかな?
---------------
サンプリングは、連続したアナログ量を、間引いて(通常ADCでディジタル化)して処理をする前処理です。 そのとき、サンプリング前のアナログ量を、正確に代表しているデータ系列が欲しいわけです。 何もしないで、再アナログ化(DA)したら、もとのアナログ信号を生成できるものでないと、ディジタル領域で演算とか何をやっているのか、無意味になってしまいます。
ナイキストさんや、染谷さんがいうには、サンプリング周波数の1/2倍以上の周波数が混じっていると、正しく再現できないと解析しています。 CD等の44.1kHzは、人間の耳が20kHzなんてまともに聞こえないだろうと決めて、決めたようなものです。
存在してはいけない高域を含んだデジタルデータをDACでアナログに戻すと、サンプリング周期のアナログポイントでは、確かに、正しいかもしれないけれど、アナログ的につないだ時間帯は、うねうねと脈動してしまいます。

元信号に、変なノイズが乗っていて、たまたまサンプリングのタイミングにノイズのピークだとか(逆側ピーク)だったりしたら、その点をつないで、元の信号予想できそうにないでしょう?
つまり、サンプリングした時に元信号が想像できるように帯域制限するのが、ローパスフィルタで、ご質問の同一帯域ということは、限定必要な1/2周波数よりさらに高い周波数成分もふくまれるし、原理的に含まれてはいけない2倍周波数の信号が、たった1/2にしか減衰されていないとんでもない離散データをねつ造していることになります。

サンプリング周波数に近い周波数のノイズがいた場合、たとえば、ちょっと低い周波数の信号が乗っていた場合。最初のサンプリングで、偶然ちょうど位相0度で、次に、少し遅い周波数なので、-10度、さらに-20度...と、36回サンプリングでちょうど一サイクルの正弦波がねつ造されます(そういう周波数の場合の例)。これを折り返しノイズと呼ぶのですが、無視できない高周波がいると変な周波数成分をもったデータがねつ造されてしまいす。
----------------
いや、折り返しノイズが発生しないように、サンプリングの前にLPFをかけるという事。サンプリングした結果折り返しノイズが入った場合、これを、原信号由来なのか、折り返しノイズなのか判別不能です。
ローパスフィルタのカットオフ周波数の話は、dai*さんが説明されているとおり、たかだか、通過域のゲインに対して、高々1/2のゲインになるにすぎません。RC直列回路は、r-1/ωCで、R=1/ωCとなるωがカットオフと一般に言われる周波数。抵抗値が2直列で等しいから、半半分といういみ。同様にこの式から、周波数が倍にはれば、インピーダンスが2倍になるというオクターブ事に半分になるという意味になります。周波数軸対数にしてゲインを書くと、カットオフで、ゲイン1/2になって、オクターブ3dbの下り直線を引いて、建前、これと低域で(1/ωc<<R)フラットの直線の交わるまでを便宜上フラットと扱う(ωが小さしときRとの比が小さいので)。制御したい信号に対して、少なくともその信号の少なくともその2倍以上のサンプリング周波数が必要で、どのくら上が必要かというと、LPFで帯域制限する場合に、折り返しノイズがでても影響がない程度にオクターブ3dBで減衰できたと思われる周波数の2倍の周波数でサンプリングが必要です。このどの程度余裕つけないといけないかは、LPFが、1次なら3dB/オクターブだけど、より高次にすればより減衰が大きくなります。高次のフィルタは、位相周りがいろいろあるので、変なフィードバックすると、遅れが邪魔してハンチングするとか、いろいろあるようなのですが、申し訳ないが、制御系まったく不案内なので、この程度の話しかできません。ごめん。
----------------------
以下雑文つづきますが省略(ためしに読んでくれてもよし:折り返しの例とかdBの話とか

オームの法則がコンダクタンス形式でないのは(知恵袋)

オームさんが、電流の流れにくさの定義の抵抗を、先に使ってしまったから。
 オームさんが、Rの定義として電流の流れやすさ(コンダクタンス)で、議論をすすめていたら、質問主さんの表示が主流になっていたかも(記号はRじゃなく、Cだとコンデンサと紛らわしいから記号はなんだろう。まあオームさんは直流の世界だけでコンデンサ考えてなかったかも)。

ちなみに、昔は、オームさんに敬意を評して、オーム(Ohm)の逆つづりの、モー(mho)という単位で、コンダクタンスを表してこともあったんやで。 記号も、Ωのさかさま文字だった℧やったんやで。

さて、こんなん知っている私は何歳でしょう?

フリップフロップのデータスキュウ(知恵袋)

フリップフロップ(シフトレジスタ)のデータスキュウ(筒抜け)の解説
ーーーーーーーーーーーーーーーー
数値(規格:スペック)としは、前の人の示したとおり。 フリップフロップの箱の中は、ゲートとかもっと分解してトランジスタになっています。 外から与えられたクロックという信号が確定する前に、D入力が変化してしまうと、結果としてどんなデータになるのかわからなくなります。微小時間といっても、nsec(10^(-9)オーダとかそれより早い時間の話)。 回路設計やさんは、内部でクロック信号の応答が、Dのデータ入力変化応答時間より極力早く確定するように、設計してます。(Q出力の変化も極端に早くならないようにという配慮もあるような無いような:これを遅くすると、早い周波数で動かなくなるのでバランス難しい)
トランジスタレベル設計者の配慮により、クロック同期の回路同士なら何とかなる期待ができる。

フリップフロップを、縦続接続(というのかな初段のQを、次段のD入力につなぐ)場合、期待値は、クロック単位で初段のD入力が、ひとつづつずれていくことを期待します。 次段のD入力のホールド時間が、初段のQ変化の遅れ時間によって満足できるなら、この動作が保証できるわけです。 初段のQ出力は、クロック変化後に起きるのだから、次段のクロック変化前のD入力のホールド時間は守られると期待が大きい。

ところが、フリップフロップのクロックが、厳密にいうと(nsec前後の意味)で、同一でないと、ホールド時間が保障できなくなってしまいます(1クロックで、2段3段すっ飛ばしてしまうような例)。 これを防ぐために、複数のフリップフロップのクロックが厳密に同時:無理やり後ろが早く前が遅いというような細工をすることだってあります(配線長の細工をするとか、極端に大きな場合は、途中でクロックドライバをいれて、時間差を無理に作るとか)。
もちろんフリップフロップが違いもの(回路構成が違ってセットアップホールド時間やデータホールド時間が微妙に違う)だとすると、単純につなぐと、うまくいかないかもしれないよ。クロック信号の負荷が重くて、立ち上がりが急峻でなくなった場合、何ボルトで、Hレベルになったという認識が、個々のトランジスタ毎にばらつくので、Hになったというタイミングがずれることがあります。だから、全回路が同時にLH偏移ができるように、強力なクロックドライバでクロック波形を急峻にします。回路図みて、論理的に不必要なインバータがなんかいっぱい入っていると感じたら、そういう話かも。
--------------------
前の方が参照先示してくれてるものは、アナログスイッチによるフリップフロップの回路が示されていて、アナログスイッチという遅い回路が、D入力につながっているので、変化が遅いので、クロック確定まで余裕が取りやすい構成になっています。

解りやすい原理的な回路ですので、よく見ると理解しやすいと思います。

ブログ内検索

カレンダー

05 2025/06 07
S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

最新コメント

[06/04 ぽち]
[05/29 ぽち]
[05/29 うさちゃん]
[05/29 うさちゃん]
[05/29 ぽち]
[05/27 ぽち]
[05/27 うさちゃん]
[05/27 ぽち]
[05/26 ぽち]
[05/26 うさちゃん]

ワイはこんな奴やで

愛称:
new3 :”しんさん”と呼んでネ
こっちも読んでね:
職業:
体重が気になる田舎者の遊び人
趣味:
電子・自転車・落語・パズル
自己紹介:
かに座B型で、"B型自分の取扱説明書"によると,”変人といわれるとなぜかうれしい”らしい。
自称”ぽち”。ご主人様に尻尾を振って、責任ないまま、生きて行きたい。

ご意見ご感想は

第三者非公開の場合、下部↓リンク欄の”new3の部屋(こっちも見てね)”を開いて、トップページの下部の、”関連リンク”ページの先頭部分にヒント。

  公開してよい連絡は↓コメント記入で

バーコード

P R